Dense Graphlet Statistics of Protein Interaction and Random Networks
نویسندگان
چکیده
Understanding evolutionary dynamics from a systemic point of view crucially depends on knowledge about how evolution affects size and structure of the organisms' functional building blocks (modules). It has been recently reported that statistics over sparse PPI graphlets can robustly monitor such evolutionary changes. However, there is abundant evidence that in PPI networks modules can be identified with highly interconnected (dense) and/or bipartite subgraphs. We count such dense graphlets in PPI networks by employing recently developed search strategies that render related inference problems tractable. We demonstrate that corresponding counting statistics differ significantly between prokaryotes and eukaryotes as well as between "real" PPI networks and scale free network emulators. We also prove that another class of emulators, the low-dimensional geometric random graphs (GRGs) cannot contain a specific type of motifs, complete bipartite graphs, which are abundant in PPI networks.
منابع مشابه
Identification of Human Disease Genes from Interactome Network Using Graphlet Interaction
Identifying genes related to human diseases, such as cancer and cardiovascular disease, etc., is an important task in biomedical research because of its applications in disease diagnosis and treatment. Interactome networks, especially protein-protein interaction networks, had been used to disease genes identification based on the hypothesis that strong candidate genes tend to closely relate to ...
متن کاملEfficient estimation of graphlet frequency distributions in protein-protein interaction networks
MOTIVATION Algorithmic and modeling advances in the area of protein-protein interaction (PPI) network analysis could contribute to the understanding of biological processes. Local structure of networks can be measured by the frequency distribution of graphlets, small connected non-isomorphic induced subgraphs. This measure of local structure has been used to show that high-confidence PPI networ...
متن کاملA General Framework for Estimating Graphlet Statistics via Random Walk
Graphlets are induced subgraph patterns and have been frequently applied to characterize the local topology structures of graphs across various domains, e.g., online social networks (OSNs) and biological networks. Discovering and computing graphlet statistics are highly challenging. First, the massive size of real-world graphs makes the exact computation of graphlets extremely expensive. Second...
متن کاملGraphlet-based measures are suitable for biological network comparison
MOTIVATION Large amounts of biological network data exist for many species. Analogous to sequence comparison, network comparison aims to provide biological insight. Graphlet-based methods are proving to be useful in this respect. Recently some doubt has arisen concerning the applicability of graphlet-based measures to low edge density networks-in particular that the methods are 'unstable'-and f...
متن کاملConstruction and Analysis of Tissue-Specific Protein-Protein Interaction Networks in Humans
We have studied the changes in protein-protein interaction network of 38 different tissues of the human body. 123 gene expression samples from these tissues were used to construct human protein-protein interaction network. This network is then pruned using the gene expression samples of each tissue to construct different protein-protein interaction networks corresponding to different studied ti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
دوره شماره
صفحات -
تاریخ انتشار 2009